Tutorial¶
Introduction¶
Lcapy is a Python package for linear circuit analysis. It will only solve linear, time invariant networks. In other words, networks comprised of basic circuit components (R, L, C, etc.) that do not vary with time.
Networks and circuits can be described using netlists or combinations of network elements. These can be drawn semiautomatically.
Lcapy cannot directly analyse nonlinear devices such as diodes or transistors although it does support simple opamps without saturation. Nevertheless, it can draw them!
Lcapy uses SymPy (symbolic Python) for its values and expressions and thus the circuit analysis can be performed symbolically. See http://docs.sympy.org/latest/tutorial/index.html for the SymPy tutorial.
Preliminaries¶
Before you can use Lcapy you need to install the Lcapy package (see Installation) or set PYTHONPATH to find the Lcapy source files.
Then fire up your favourite python interpreter, for example, ipython:
>>> ipython pylab
Expressions¶
Lcapy defines a number of symbols corresponding to different domains:
 t – time (real)
 f – frequency (real)
 s – complex (sdomain) frequency
 omega – angular frequency (real)
Expressions can be formed using these symbols, for example, a timedomain expression can be created using:
>>> from lcapy import t, delta, u
>>> v = 2 * t * u(t) + 3 + delta(t)
>>> i = 0 * t + 3
and a sdomain expression can be created using:
>>> from lcapy import s, j, omega
>>> H = (s + 3) / (s  4)
>>> H
s + 3
─────
s  4
For steadystate signals, the sdomain can be converted to the angular frequency domain by substituting \(\mathrm{j} \omega\) for \(s\)
>>> from lcapy import s, j, omega
>>> H = (s + 3) / (s  4)
>>> A = H(j * omega)
>>> A
j⋅ω + 3
───────
j⋅ω  4
Also note, real numbers are approximated by rationals.
Lcapy expressions have a number of attributes, including:
 numerator, N – numerator of rational function
 denominator, D – denominator of rational function
 magnitude – magnitude
 angle – angle
 real – real part
 imag – imaginary part
 conjugate – complex conjugate
 expr – the underlying SymPy expression
 val – the expression as evaluated as a floating point value (if possible)
and a number of generic methods including:
 simplify – attempt simple simplification of the expression
 rationalize_denominator – multiply numerator and denominator by complex conjugate of denominator
 evaluate – evaluate at specified vector and return floating point vector
Here’s an example of using these attributes and methods:
>>> from lcapy import s, j, omega
>>> H = (s + 3) / (s  4)
>>> A = H(j * omega)
>>> A
j⋅ω + 3
───────
j⋅ω  4
>>> A.rationalize_denominator()
2
ω  7⋅j⋅ω  12
───────────────
2
ω + 16
>>> A.real
2
ω  12
───────
2
ω + 16
>>> A.imag
7⋅ω
───────
2
ω + 16
>>> A.N
j⋅ω + 3
>>> A.D
j⋅ω  4
>>> A.phase
⎛ 2 ⎞
atan2⎝7⋅ω, ω  12⎠
>>> A.magnitude
__________________
╱ 4 2
╲╱ ω + 25⋅ω + 144
─────────────────────
2
ω + 16
Each domain has specific methods, including:
 fourier – Convert to Fourier domain
 laplace – Convert to Laplace (s) domain
 time – Convert to time domain
Lcapy defines a number of functions that can be used in expressions, including:
 u – Heaviside’s unit step
 H – Heaviside’s unit step
 delta – Dirac delta
 cos – cosine
 sin – sine
 sqrt – square root
 exp – exponential
 log10 – logarithm base 10
 log – natural logarithm
Simple circuit components¶
The basic circuit components are twoterminal (oneport) devices:
 I – current source
 V – voltage source
 R – resistance
 G – conductance
 C – capacitance
 L – inductance
These are augmented by generic sdomain components:
 Y – admittance
 Z – impedance
Here are some examples of their creation:
>>> from lcapy import *
>>> R1 = R(10)
>>> C1 = C(10e6)
>>> L1 = L('L_1')
Simple circuit element combinations¶
Here’s an example of resistors in series
>>> from lcapy import *
>>> R1 = R(10)
>>> R2 = R(5)
>>> Rtot = R1 + R2
>>> Rtot
R(10) + R(5)
>>> Rtot.simplify()
R(15)
Here R(10) creates a 10 ohm resistor and this is assigned to the variable R1. Similarly, R(5) creates a 5 ohm resistor and this is assigned to the variable R2. Rtot is the name of the network formed by connecting R1 and R2 in series. Calling the simplify method will simplify the network and combine the resistors into a single resistor equivalent.
Here’s an example of a parallel combination of resistors. Note that the parallel operator is  instead of the usual .
>>> from lcapy import *
>>> Rtot = R(10)  R(5)
>>> Rtot
R(10)  R(5)
>>> Rtot.simplify()
R(10/3)
The result can be performed symbolically, for example,
>>> from lcapy import *
>>> Rtot = R('R_1')  R('R_2')
>>> Rtot
R(R_1)  R(R_2)
>>> Rtot.simplify()
R(R_1*R_2/(R_1 + R_2))
>>> Rtot.simplify()
R(R₁)  R(R₂)
Here’s another example using inductors in series
>>> from lcapy import *
>>> L1 = L(10)
>>> L2 = L(5)
>>> Ltot = L1 + L2
>>> Ltot
L(10) + L(5)
>>> Ltot.simplify()
L(15)
Finally, here’s an example of a parallel combination of capacitors
>>> from lcapy import *
>>> Ctot = C(10)  C(5)
>>> Ctot
C(10)  C(5)
>>> Ctot.simplify()
C(15)
Impedances¶
Let’s consider a series RLC network
>>> from lcapy import *
>>> n = R(4) + L(10) + C(20)
>>> n
R(4) + L(10) + C(20)
>>> n.Z
⎛ 2 2⋅s 1 ⎞
10⋅⎜s + ─── + ───⎟
⎝ 5 200⎠
───────────────────
s
Notice the result is a rational function of s. Remember impedance is a frequency domain concept. A rational function can be formatted in a number of different ways, for example,
>>> n.Z.ZPK()
⎛ ____ ⎞ ⎛ ____ ⎞
⎜ ╲╱ 14 1⎟ ⎜ ╲╱ 14 1⎟
10⋅⎜s  ────── + ─⎟⋅⎜s + ────── + ─⎟
⎝ 20 5⎠ ⎝ 20 5⎠
────────────────────────────────────
s
>>> n.Z.canonical()
⎛ 2 2⋅s 1 ⎞
10⋅⎜s + ─── + ───⎟
⎝ 5 200⎠
───────────────────
s
Here ZPK() prints the impedance in ZPK (zeropolegain) form while canonical() prints the numerator and denominator of the rational function in monic form (with unity leading coefficient).
The corresponding parallel RLC network yields
>>> from lcapy import *
>>> n = R(5)  L(20)  C(10)
>>> n
R(5)  L(20)  C(10)
>>> n.Z
s
──────────────────
⎛ 2 s 1 ⎞
10⋅⎜s + ── + ───⎟
⎝ 50 200⎠
>>> n.Z.ZPK()
s
──────────────────────────────────
⎛ 1 7⋅j⎞ ⎛ 1 7⋅j⎞
10⋅⎜s + ───  ───⎟⋅⎜s + ─── + ───⎟
⎝ 100 100⎠ ⎝ 100 100⎠
>>> n.Z.canonical()
s
──────────────────
⎛ 2 s 1 ⎞
10⋅⎜s + ── + ───⎟
⎝ 50 200⎠
>>> n.Y
2
200⋅s + 4⋅s + 1
────────────────
20⋅s
Notice how n.Y returns the admittance of the network, the reciprocal of the impedance n.Z.
The frequency response can be evaluated numerically by specifying a vector of frequency values. For example:
>>> from lcapy import *
>>> from numpy import linspace
>>> n = Vstep(20) + R(5) + C(10, 0)
>>> vf = linspace(0, 4, 400)
>>> Isc = n.Isc(f).evaluate(vf)
Note, in this example, the initial capacitor voltage is specified to be zero. If this initial condition is unspecified, the short circuit current cannot be determined.
Then the frequency response can be plotted. For example,
>>> from matplotlib.pyplot import figure, show
>>> fig = figure()
>>> ax = fig.add_subplot(111)
>>> ax.loglog(f, abs(Isc), linewidth=2)
>>> ax.set_xlabel('Frequency (Hz)')
>>> ax.set_ylabel('Current (A/Hz)')
>>> ax.grid(True)
>>> show()
A simpler approach is to use the plot method:
>>> from lcapy import *
>>> from numpy import linspace
>>> n = Vstep(20) + R(5) + C(10, 0)
>>> vf = linspace(0, 4, 400)
>>> n.Isc(f).plot(vf, log_scale=True)
Here’s a complete example Python script to plot the impedance of a series RLC network:
from lcapy import *
from numpy import logspace
from matplotlib.pyplot import savefig, show
N = R(10) + C(1e4) + L(1e3)
vf = logspace(0, 5, 400)
N.Z.frequency_response().magnitude.plot(vf)
savefig('seriesRLC3Z.png')
show()
Simple transient analysis¶
Let’s consider a series RC network in series with a DC voltage source
>>> from lcapy import *
>>> n = Vstep(20) + R(5) + C(10, 0)
>>> n
Vstep(20) + R(5) + C(10, 0)
>>> Voc = n.Voc(s)
>>> Voc
20
──
s
>>> n.Isc(s)
4
────────
s + 1/50
>>> isc = n.Isc.transient_response()
>>> isc
⎧ t
⎪ ───
⎨ 50
⎪4⋅e for t ≥ 0
⎩
Here n is network formed by the components in series, and n.Voc(s) is the opencircuit sdomain voltage across the network. Note, this is the same as the sdomain value of the voltage source. n.Isc(s) is the shortcircuit sdomain voltage through the network. The method transient_response converts this to the timedomain. Note, since the capacitor has the initial value specified, this network is analysed as an initial value problem and thus the result is not known for \(t<0\). If the initial capacitor voltage is not specified, the network cannot be analysed.
Of course, the previous example can be performed symbolically,
>>> from lcapy import *
>>> n = Vstep('V_1') + R('R_1') + C('C_1', 0)
>>> n
Vstep(V₁) + R(R₁) + C(C₁, 0)
>>> Voc = n.Voc(s)
>>> Voc
V₁
──
s
>>> n.Isc(s)
V₁
──────────────
⎛ 1 ⎞
R₁⋅⎜s + ─────⎟
⎝ C₁⋅R₁⎠
>>> isc = n.Isc.transient_response()
>>> isc
⎧ t
⎪ ─────
⎪ C₁⋅R₁
⎨V₁⋅e
⎪───────── for t ≥ 0
⎪ R₁
⎩
The transient response can be evaluated numerically by specifying a vector of time values.
>>> from lcapy import *
>>> from numpy import linspace
>>> n = Vstep(20) + R(5) + C(10, 0)
>>> t = linspace(0, 100, 400)
>>> isc = n.Isc.transient_response(t)
Then the transient response can be plotted. Alternatively, the plot method can be used.
from lcapy import *
from numpy import linspace
from matplotlib.pyplot import savefig, show
N = Vstep(20) + R(10) + C(1e4, 0)
tv = linspace(0, 0.01, 1000)
N.Isc.transient_response().plot(tv)
show()
savefig('seriesVRC1isc.png')
This produces:
Here’s a complete example Python script of the shortcircuit current through an underdamped series RLC network:
from lcapy import Vstep, R, L, C
from matplotlib.pyplot import savefig, show
from numpy import linspace
a = Vstep(10) + R(0.1) + C(0.4) + L(0.2, 0)
tv = linspace(0, 10, 1000)
a.Isc.transient_response().plot(tv)
savefig('seriesVRLC1isc.png')
show()
Transformations¶
A oneport network can be represented as a Thevenin network (a series combination of a voltage source and an impedance) or as a Norton network (a parallel combination of a current source and an admittance).
Here’s an example of a Thevenin to Norton transformation:
>>> from lcapy import *
>>> T = Vdc(10) + R(5)
>>> n = T.norton()
>>> n
G(1/5)  Idc(2)
Similarly, here’s an example of a Norton to Thevenin transformation:
>>> from lcapy import *
>>> n = Idc(10)  R(5)
>>> T = n.thevenin()
>>> T
R(5) + Vdc(50)
Twoport networks¶
The basic circuit components are oneport networks. They can be combined to create a twoport network. The simplest twoport is a shunt:
+

+++
 
OP 
 
+++

+
A more interesting twoport network is an L section (voltage divider):
++
+ OP1 ++
++ 
+++
 
OP2
 
+++

+
 This is comprised from any two oneport networks. For example,
>>> from lcapy import * >>> R1 = R('R_1') >>> R2 = R('R_2') >>> n = LSection(R1, R2) >>> n.Vtransfer R_2/(R_1 + R_2)
Here n.Vtransfer determines the forward voltage transfer function V_2(s) / V_1(s).
 The opencircuit input impedance can be found using:
>>> n.Z1oc R₁ + R₂
 The opencircuit output impedance can be found using:
>>> n.Z2oc R₂
 The shortcircuit input admittance can be found using:
>>> n.Y1sc 1 ── R₁
 The shortcircuit output admittance can be found using:
>>> n.Y2sc R₁ + R₂ ─────── R₁⋅R₂
Twoport combinations¶
Twoport networks can be combined in series, parallel, series at the input with parallel at the output (hybrid), parallel at the input with series at the output (inverse hybrid), but the most common is the chain or cascade. This connects the output of the first twoport to the input of the second twoport.
For example, an L section can be created by chaining a shunt to a series oneport.
>>> from lcapy import *
>>> n = Series(R('R_1')).chain(Shunt(R('R_2')))
>>> n.Vtransfer
R_2/(R_1 + R_2)
Twoport matrices¶
Twoport networks can be represented by six two by two matrices, A, B, G, H, Y, Z. Each has their own merits (see http://en.wikipedia.org/wiki/Twoport_network).
 Consider an L section comprised of two resistors:
>>> from lcapy import * >>> n = LSection(R('R_1'), R('R_2')))
 The different matrix representations can be shown using:
>>> n.A ⎡R₁ + R₂ ⎤ ⎢─────── R₁⎥ ⎢ R₂ ⎥ ⎢ ⎥ ⎢ 1 ⎥ ⎢ ── 1 ⎥ ⎣ R₂ ⎦ >>> n.B ⎡ 1 R₁ ⎤ ⎢ ⎥ ⎢1 R₁ ⎥ ⎢─── ── + 1⎥ ⎣ R₂ R₂ ⎦ >>> n.G ⎡ 1 R₂ ⎤ ⎢─────── ───────⎥ ⎢R₁ + R₂ R₁ + R₂⎥ ⎢ ⎥ ⎢ R₂ R₁⋅R₂ ⎥ ⎢─────── ───────⎥ ⎣R₁ + R₂ R₁ + R₂⎦ >>> n.H ⎡R₁ 1 ⎤ ⎢ ⎥ ⎢ 1 ⎥ ⎢1 ──⎥ ⎣ R₂⎦ >>> n.Y ⎡1 1 ⎤ ⎢── ─── ⎥ ⎢R₁ R₁ ⎥ ⎢ ⎥ ⎢1 R₁ + R₂⎥ ⎢─── ───────⎥ ⎣ R₁ R₁⋅R₂ ⎦ >>> n.Z ⎡R₁ + R₂ R₂⎤ ⎢ ⎥ ⎣ R₂ R₂⎦
Note, some of the twoport matrices cannot represent a network. For example, a series impedance has a non specified Z matrix and a shunt impedance has a non specified Y matrix.
Transfer functions¶
Transfer functions can be created in a similar manner to Matlab, either using lists of numerator and denominator coefficients:
>>> from lcapy import *
>>> H1 = tf(0.001, [1, 0.05, 0])
>>> H1
0.001
───────────────
2
1.0⋅s + 0.05⋅s
from lists of poles and zeros (and optional gain):
>>> from lcapy import *
>>> H2 = zp2tf([], [0, 0.05])
>>> H2
0.001
───────────────
2
1.0⋅s + 0.05⋅s
or symbolically:
>>> from lcapy import *
>>> H3 = 0.001 / (s**2 + 0.05 * s)
>>> H3
0.001
───────────────
2
1.0⋅s + 0.05⋅s
In each case, parameters can be expressed numerically or symbolically, for example,
>>> from lcapy import *
>>> H4 = zp2tf(['z_1'], ['p_1', 'p_2'])
>>> H4
s  z₁
───────────────────
(p₁ + s)⋅(p₂ + s)
Partial fraction analysis¶
Lcapy can be used for converting rational functions into partial fraction form. Here’s an example:
>>> from lcapy import *
>>> G = 1 / (s**2 + 5 * s + 6)
>>> G.partfrac()
1 1
 ───── + ─────
s + 3 s + 2
Here’s an example of a not strictly proper rational function,
>>> from lcapy import *
>>> H = 5 * (s + 5) * (s  4) / (s**2 + 5 * s + 6)
>>> H.partfrac()
70 90
5 + ─────  ─────
s + 3 s + 2
The rational function can also be printed in ZPK form:
>>> H.ZPK()
5⋅(s  4)⋅(s + 5)
─────────────────
(s + 2)⋅(s + 3)
Here it is obvious that the poles are 2 and 3. These can also be found using the poles function:
>>> H.poles()
{3: 1, 2: 1}
Here the number after the colon indicates how many times the pole is repeated.
Similarly, the zeros can be found using the zeros function:
>>> H.zeros()
{5: 1, 4: 1}
Lcapy can also handle rational functions with a delay.
Inverse Laplace transforms¶
Lcapy can perform inverse Laplace transforms. Here’s an example for a strictly proper rational function:
>>> from lcapy import s
>>> H = 5 * (s  4) / (s**2 + 5 * s + 6)
>>> H.partfrac()
35 30
─────  ─────
s + 3 s + 2
>>> H.inverse_laplace()
⎧ 2⋅t 3⋅t
⎨ 30⋅e + 35⋅e for t ≥ 0
⎩
Note that the unilateral inverse Laplace transform can only determine the result for \(t \ge 0\). If you know that the system is causal, then use:
>>> H.inverse_laplace(causal=True)
⎛ 2⋅t 3⋅t⎞
⎝ 30⋅e + 35⋅e ⎠⋅Heaviside(t)
The Heaviside function is also known as the unit step.
There is a shorthand notation for inverse Laplace transforms:
>>> H(t, causal=True)
⎛ 2⋅t 3⋅t⎞
⎝ 30⋅e + 35⋅e ⎠⋅Heaviside(t)
When the rational function is not strictly proper, the inverse Laplace transform has Dirac deltas (and derivatives of Dirac deltas):
>>> from lcapy import s
>>> H = 5 * (s  4) / (s**2 + 5 * s + 6)
>>> H.partfrac()
70 90
5 + ─────  ─────
s + 3 s + 2
>>> H.inverse_laplace(causal=True)
⎛ 2⋅t 3⋅t⎞
⎝ 90⋅e + 70⋅e ⎠⋅Heaviside(t) + 5⋅DiracDelta(t)
Here’s another example of a strictly proper rational function with a repeated pole:
>>> from lcapy import s
>>> H = 5 * (s + 5) / ((s + 3) * (s + 3))
>>> H.ZPK()
5⋅(s + 5)
─────────
2
(s + 3)
>>> H.partfrac()
5 10
───── + ────────
s + 3 2
(s + 3)
>>> H.inverse_laplace(causal=True)
⎛ 3⋅t 3⋅t⎞
⎝10⋅t⋅e + 5⋅e ⎠⋅Heaviside(t)
Rational functions with delays can also be handled:
>>> from lcapy import s
>>> import sympy as sym
>>> T = sym.symbols('T')
>>> H = 5 * (s + 5) * (s  4) / (s**2 + 5 * s + 6) * sym.exp(s * T)
>>> H.partfrac()
⎛ 70 90 ⎞ T⋅s
⎜5 + ─────  ─────⎟⋅e
⎝ s + 3 s + 2⎠
>>> H.inverse_laplace(causal=True)
⎛ 2⋅T  2⋅t 3⋅T  3⋅t⎞
⎝ 90⋅e + 70⋅e ⎠⋅Heaviside(T + t) + 5⋅DiracDelta(T + t)
Lcapy can convert sdomain products to time domain convolutions, for example,
>>> from lcapy import Is
>>> Is('V(s) * Y(s)').inverse_laplace(causal=True)
∞
⌠
⎮ v(t  τ)⋅y(τ) dτ
⌡
∞
Here the class Is represents an sdomain current.
Laplace transforms¶
Lcapy can also perform Laplace transforms. Here’s an example:
>>> from lcapy import t
>>> v = 10 * t ** 2 + 3 * t
>>> v.laplace()
3⋅s + 20
────────
3
s
There is a shorthand notation for the Laplace transform:
>>> v(s)
3⋅s + 20
────────
3
s
Circuit analysis¶
The nodal voltages for a linear circuit can be found using Modified Nodal Analysis (MNA). This requires the circuit topology be entered as a netlist (see Netlists). This describes each component, its name, value, and the nodes it is connected to. This netlist can be read from a file or created dynamically, for example,
>>> from lcapy import Circuit
>>> cct = Circuit()
>>> cct.add('V1 1 0 step 10')
>>> cct.add('Ra 1 2 3e3')
>>> cct.add('Rb 2 0 1e3')
This creates a circuit comprised of a 10 V DC voltage source connected to two resistors in series. The node named 0 denotes the ground which the other voltages are referenced to.
The circuit has an attribute for each circuit element (and for each node starting with an alphabetical character). These can be interrogated to find the voltage drop across an element or the current through an element, for example,
>>> cct.V1.V
⎧ 10⎫
⎨s: ──⎬
⎩ s ⎭
>>> cct.Rb.V
⎧ 5 ⎫
⎨s: ───⎬
⎩ 2⋅s⎭
Notice, how the displayed voltages are Laplace domain voltages. The transient voltages can be determined using an inverse Laplace transform:
>>> cct.V1.V(t)
10
Alternatively, this can be achieved using the lowercase v attribute:
>>> cct.V1.v
10
The voltage between a node and ground can be determined with the node name as an index, for example,
>>> cct[1].V
⎧ 10⎫
⎨s: ──⎬
⎩ s ⎭
>>> cct[2].V
⎧ 5 ⎫
⎨s: ───⎬
⎩ 2⋅s⎭
Since Lcapy uses SymPy, circuit analysis can be performed symbolically. This can be achieved by using symbolic arguments or by not specifying a component value. In the latter case, Lcapy will use the component name for its value. For example,
>>> cct = Circuit()
>>> cct.add('V1 1 0 step Vs')
>>> cct.add('R1 1 2')
>>> cct.add('C1 2 0')
>>> cct[2].V
⎧ V_s ⎫
⎪s: ──────────────────⎪
⎨ ⎛ 2 s ⎞⎬
⎪ C₁⋅R₁⋅⎜s + ─────⎟⎪
⎩ ⎝ C₁⋅R₁⎠⎭
>>> : cct[2].v
⎛ t ⎞
⎜ ─────⎟
⎜ C₁⋅R₁⎟
⎝V_s  V_s⋅e ⎠⋅Heaviside(t)
Transform Domains¶
Lcapy analyses a linear circuit using a number of transform domains and the principle of superposition. Voltage and current signals are decomposed into a DC component, one or more AC components (one for each angular frequency), a transient component, and noise components (one for each noise source). NB, this decomposition is experimental and may change.
For example, consider:
>>> Voc = (Vdc(10) + Vac(20) + Vstep(30) + Vnoise(40)).Voc
>>> Voc
⎧ 30 ⎫
⎨dc: 10, n1: 40, s: ──, ω: 20⎬
⎩ s ⎭
Here the opencircuit voltage is decomposed into four parts (stored in a dictionary). The DC component is keyed by ‘dc’, the transient component is keyed by ‘s’ (since this is analysed in the Laplace or sdomain), the noise components are keyed by noise identifiers of the form ‘nx’ (where x is an integer), and the ac components are keyed by the angular frequency. The different parts of a decomposition can also be accessed using attributes, for example,
>>> Voc.s
30
──
s
Note, this only returns the Laplace transform of the transient component of the decomposition. The full Laplace transform of the opencircuit voltage (ignoring the noise component) can be obtained using:
>>> from lcapy import s
>>> Voc(s)
⎛ 2 2⎞
20⋅⎝2⋅ω + 3⋅s ⎠
────────────────
⎛ 2 2⎞
s⋅⎝ω + s ⎠
Similarly, the timedomain representation (ignoring the noise component) can be determined using:
>>> from lcapy import t
>>> Voc(t)
20⋅cos(ω⋅t) + 30⋅Heaviside(t) + 10
Initial Value Problems¶
The initial voltage difference across a capacitor or the initial current through an inductor can be specified as the second argument. For example,
>>> cct = Circuit()
>>> cct.add('V1 1 0 step Vs')
>>> cct.add('C1 2 1 C1 v0')
>>> cct.add('L1 2 0 L1 i0')
>>> cct[2].V(s)
⎛ i₀ ⎞
(V_s + v₀)⋅⎜ ────────────── + s⎟
⎝ C₁⋅V_s + C₁⋅v₀ ⎠
─────────────────────────────────
2 1
s + ─────
C₁⋅L₁
When an initial condition is detected, the circuit is analysed in the sdomain as an initial value problem. The values of sources are ignored for \(t<0\) and the result is only defined for \(t\ge 0\).
Transfer functions¶
Transfer functions can be found from the ratio of two sdomain quantities such as voltage or current with zero initial conditions. Here’s an example using an arbitrary input voltage V(s)
>>> from lcapy import Circuit
>>> cct = Circuit()
>>> cct.add('V1 1 0 {V(s)}')
>>> cct.add('R1 1 2')
>>> cct.add('C1 2 0 C1 0')
>>> cct[2].V
⎧ V(s) ⎫
⎨s: ───────────⎬
⎩ C₁⋅R₁⋅s + 1⎭
>>> H = cct[2].V(s) / cct[1].V(s)
>>> H
1
───────────
C₁⋅R₁⋅s + 1
The corresponding impulse response can found from an inverse Laplace transform:
>>> H.inverse_laplace(causal=True)
t
─────
C₁⋅R₁
e ⋅Heaviside(t)
───────────────────
C₁⋅R₁
Transfer functions can also be created using the transfer method of a circuit. For example,
>>> from lcapy import Circuit
>>> cct = Circuit()
>>> cct.add('R1 1 2')
>>> cct.add('C1 2 0')
>>> H = cct.transfer(1, 0, 2, 0)
>>> H
1
───────────
C₁⋅R₁⋅s + 1
In this example, the transfer method computes (V[1]  V[0]) / (V[2]  V[0]). In general, all independent sources are killed and so the response is causal.
>>> H.inverse_laplace()
t
─────
C₁⋅R₁
e ⋅Heaviside(t)
───────────────────
C₁⋅R₁
Other circuit methods¶
cct.Vdict Dictionary of node voltages
cct.Idict Dictionary of branch currents
cct.Isc(Np, Nm) Shortcircuit current between nodes Np and Nm.
cct.Voc(Np, Nm) Opencircuit voltage between nodes Np and Nm.
cct.isc(Np, Nm) Shortcircuit tdomain current between nodes Np and Nm.
cct.voc(Np, Nm) Opencircuit tdomain voltage between nodes Np and Nm.
cct.admittance(Np, Nm) sdomain admittance between nodes Np and Nm.
cct.impedance(Np, Nm) sdomain impedance between nodes Np and Nm.
cct.kill() Remove independent sources.
cct.kill_except(sources) Remove independent sources except ones specified.
cct.transfer(N1p, N1m, N2p, N2m) Voltage transfer function V2/V1, where V1 = V[N1p]  V[N1m], V2 = V[N2p]  V[N2m].
cct.thevenin(Np, Nm) Thevenin model between nodes Np and Nm.
cct.norton(Np, Nm) Norton model between nodes Np and Nm.
 cct.twoport(self, N1p, N1m, N2p, N2m) Create twoport component where
 I1 is the current flowing into N1p and out of N1m, I2 is the current flowing into N2p and out of N2m, V1 = V[N1p]  V[N1m], V2 = V[N2p]  V[N2m].
cct.add(component) Add component from net list.
cct.remove(component) Remove component from net list.
cct.netfile_add(filename) Add netlist from file.
cct.s_model() Convert circuit to sdomain model.
cct.pre_initial_model() Convert circuit to preinitial model.
Plotting¶
Lcapy expressions have a plot method; this differs depending on the domain. For example, the plot method for sdomain expressions produces a polezero plot. Here’s an example:
from lcapy import s, j, Hs
from matplotlib.pyplot import savefig, show
H = Hs((s  2) * (s + 3) / (s * (s  2 * j) * (s + 2 * j)))
H.plot()
show()
savefig('tf1polezeroplot.png')
The plot method for fdomain and \(\omega\) domain expressions produce spectral plots, for example,
from lcapy import s, j, pi, f, Hs
from matplotlib.pyplot import savefig, show
from numpy import logspace
H = Hs((s  2) * (s + 3) / (s * (s  2 * j) * (s + 2 * j)))
A = H(j * 2 * pi * f)
fv = logspace(1, 4, 400)
A.plot(fv, log_scale=True)
show()
savefig('tf1bodeplot.png')
Schematics¶
Schematics can be generated from a netlist and from oneport networks. In both cases the drawing is performed using the LaTeX Circuitikz package. The schematic can be displayed interactively or saved to a pdf or png file.
Netlist schematics¶
Hints are required to designate component orientation and explicit wires are required to link nodes of the same potential but with different coordinates. For more details see Schematics.
 Here’s an example:
>>> from lcapy import Circuit >>> cct = Circuit() >>> cct.add('V1 1 0 {V(s)}; down') >>> cct.add('R1 1 2; right') >>> cct.add('C1 2 0_2; down') >>> cct.add('W1 0 0_2; right') >>> cct.draw('schematic.pdf')
Note, the orientation hints are appended to the netlist strings with a semicolon delimiter. The drawing direction is with respect to the first node. The component W1 is a wire. Nodes with an underscore in their name are not drawn with a closed blob.
 Here’s another example, this time loading the netlist from a file:
>>> from lcapy import Circuit >>> cct = Circuit('voltagedivider.sch') >>> cct.draw('voltagedivider.pdf')
Here are the contents of the file ‘voltagedivider.sch’:
V1 1 0_1 dc V; down
R1 1 2 R1; right
R2 2 0 R2; down
P1 2_2 0_2; down
W1 2 2_2; right
W2 0_1 0; right
W3 0 0_2; right
Here, P1 defines a port. This is shown as a pair of open blobs.
Here’s the resulting schematic:
Many other components can be drawn than can be simulated. This includes nonlinear devices such as transistors and diodes and time varying components such as switches. For example, here’s a common base amplifier,
This is described by the netlist:
Q1 3 0 2 pnp; up
R1 1 2;right
R2 4 0_4;down
P1 1 0_1;down
W 0_1 0;right
W 0 0_4;right
W 3 4;right
Network schematics¶
Oneport networks can be drawn with a horizontal layout. Here’s an example:
>>> from lcapy import R, C, L
>>> ((R(1) + L(2))  C(3)).draw()
Here’s the result:
The sdomain model can be drawn using:
>>> from lcapy import R, C, L
>>> ((R(1) + L(2))  C(3)).s_model().draw()
This produces:
Internally, Lcapy converts the network to a netlist and then draws the netlist. The netlist can be found using the netlist method, for example,
>>> from lcapy import R, C, L
>>> print(((R(1) + L(2))  C(3)).netlist())
yields:
W 1 3; right, size=0.5
W 3 4; up, size=0.4
W 3 5; down, size=0.4
W 6 2; right, size=0.5
W 6 7; up, size=0.4
W 6 8; down, size=0.4
R 4 9 1; right
W 9 10; right, size=0.5
L 10 7 2 0; right
C 5 8 3 0; right
Note, the components have anonymous identifiers.
IPython Notebooks¶
IPython notebooks allow interactive markup of python code and text. A number of examples are provided in the lcapy/doc/examples/notebooks directory. Before these notebooks can be viewed in a browser you need to start an IPython notebook server.
>>> cd lcapy/doc/examples/notebooks
>>> ipython notebook